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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the

form: »
positions momenta
A A

(f N \
H(q 5925 -5qns P1sP2se++5PN)

The time evolution of an orbit (trajectory) with initial
condition

P(0)=(q,(0), 4,(0)s...,q5(0), p,(0), p,(0),...,pN(0))

is governed by the Hamilton’s equations of motion

dt ~ dq; ' dt ap;



Variational Equations

We use the notation X = (q;,qys---sqnsP1sP2se-+sPn) - The
deviation vector from a given orbit is denoted by

v = (0X,, 0X,,...,0X )T, with n=2N

The time evolution of v is given by
the so-called variational equations:

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93



Symplectic Maps

Consider an 2N-dimensional symplectic map T. In this
case we have discrete time.

The evolution of an orbit with initial condition

P(0)=(x,(0), x,(0),...,x,x(0))
is governed by the equations of map T

P(i+1)=T P(i) , i=0,1,2,...

The evolution of an initial deviation vector

v(0) = (0x,(0), 6x,(0),..., 6x,,(0))
is given by the corresponding tangent map

aT
vi+1)=—] -v() ,i=0,1,2,..
oP|.



Chaos detection techniques

 Based on the visualization of orbits
v Poincaré Surface of Section (PSS)
v' the color and rotation (CR) method
v' the 3D phase space slices (3PSS) technique



Poincareé Surface of Section (PSS)

We can constrain the study of an N+1
degree of freedom Hamiltonian system
to a 2N-dimensional subspace of the
general phase space.

—

In this sense an N+1 degree of freedom
Hamiltonian system corresponds to a
2N'dimenSi0nal Symplectic map. Lieberman & Lichtenberg, 1992, Regular and Chaotic

Dynamics, Springer.
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The color and rotation (CR) method

For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic
maps:

We consider the 3D projection of the PSS and use color to indicate the 4t
dimension.

Katsanikas & Patsis, Int. J. Bif. Chaos (2011)



The 3D phase space slices (3PSS)
technique

For 3 degree of freedom Hamiltonian systems and 4 dimensional symplectic
maps:

We consider thin 3D phase space slices of the 4D phase space (e.g. [p,| < €)
and present intersections of orbits with these slices.

Richter et al., Phys. Rev. E (2014)



Chaos detection techniques

 Based on the visualization of orbits
v Poincaré Surface of Section (PSS)
v" the color and rotation (CR) method
v" the 3D phase space slices (3PSS) technique

* Based on the numerical analysis of orbits
v Frequency Map Analysis
v 0-1 test



Frequency Map Analysis

Create Frequency Maps by computing the fundamental frequencies of orbits.

Regular motion: The computed frequencies do not vary in time

Chaotic motion: The computed frequencies vary in time

Frequency Maps — Boxes
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Steier et al., Phys. Rev. E (2002)

Papaphilippou & Laskar, Astron. Astrophys. (1998)



Chaos detection techniques

Based on the visualization of orbits
v Poincaré Surface of Section (PSS)
v" the color and rotation (CR) method
v" the 3D phase space slices (3PSS) technique

Based on the numerical analysis of orbits

v Frequency Map Analysis

v 0-1 test
Chaos indicators based on the evolution of deviation vectors from
a given orbit

v" Maximum Lyapunov Exponent (MLE)

v" Fast Lyapunov Indicator (FLI) and Orthogonal Fast Lyapunov
Indicators (OFLI and OFLI2)

v' Mean Exponential Growth Factor of Nearby Orbits (MEGNO)
v Relative Lyapunov Indicator (RLI)

v Smaller ALignment Index — SALI

v Generalized ALignment Index — GALI



Maximum Lyapunov Exponent (MLE)

Chaos: sensitive dependence on initial conditions.

Roughly speaking, the MLE of a given orbit characterizes the mean exponential

rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0)
and an initial deviation vector (small perturbation) from it v(0).

Then the mean exponential rate of divergence is:
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Figure 5.7. Behavior of o , at the intermediate energy E = 0.125 for initial points
taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions {after Benettin

et al., 1976).



The
Smaller ALignment Index
(SALI)

method



Definition of the SALI

We follow the evolution in time of two different initial
deviation vectors (v,(0), v,(0)), and define SALI [S., J.
Phys. A (2001) — S. & Manos, Lect. Notes Phys. (2016)] as:

SALI(t) = ming|[V,(t) + V2 (O], [[V1 (1) — V2 (O |13

where
vy (t)

Vil

When the two vectors become collinear

SALI(t) — 0

Vi(t) =



Behavior of SALI for chaotic motion

For chaotic orbits the two initially
different deviation vectors tend to
coincide with the direction defined
by the maximum Lyapunov
exponent.
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Behavior of SALI for chaotic motion

For chaotic orbits the two initially
different deviation vectors tend to
coincide with the direction defined
by the maximum Lyapunov
exponent. A
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Behavior of SALI for chaotic motion

For chaotic orbits the two initially
different deviation vectors tend to
coincide with the direction defined
by the maximum Lyapunov  Z.-
exponent. A

P v, (1)
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Behavior of the SALI for chaotic motion

We test the validity of the approximationLSALIoc e~ M-AEL[[S et al.,
J. Phys. A (2004)] for a chaotic orbit of the 3D Hamiltonian

3
Wj
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Behavior of SALI for regular motion

Regular motion occurs on a torus and two different initial
deviation vectors become tangent to the torus, generally
having different directions.
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SALI — Hénon-Heiles system

As an example, we consider the 2D Hénon-Heiles system:
1 1 1
H = E(p,zc +p3) +E(x2 + y?) +x2y—§y3

For E=1/8 we consider the orbits with initial conditions:
Regular orbit, x=0, y=0.55, p.=0.2417, py=0

Chaotic orbit, x=0, y=-0.016, p,=0.49974, p, =0

Chaotic orbit, x=0, y=-0.01344, p_=0.49982, py=0

0.5 0F

log(SALI)
do

12 +

-16




SALI — Hénon-Heiles system

Bl 1og(SALD <-12

i - B -12 <log(SALI) < -8

" -8 <log(SALI) < -4
-4 <log(SALI)




Applications — 2D map

X, = X, tX,
. (mod 27)
X, = X,-vsin(x, +x,)

For v=0.5 we consider the orbits:
regular orbit A with initial conditions x ,=2, x,=0.
chaotic orbit B with initial conditions x,=3, x,=0. N

|
o
T

log(SALI)

12

S., J. Phys. A (2001)



Behavior of the SALI

2D maps
SALI—0 both for regular and chaotic orbits

following, however, completely different time rates which
allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps
SALI—0 for chaotic orbits

SALI—constant # (0 for regular orbits




The
Generalized ALignment Indices

(GALIs)
method



Definition of the Generalized
Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram
formed by the two deviation vectors.
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Definition of the Generalized
Alignment Index (GALI)

SALI effectively measures the ‘area’ of the parallelogram
formed by the two deviation vectors.

11 — Vo[ - [V + 02|
A A N 2 £
max{ ||V; — V|, [[Vy + V2 ][}

2
Area « SALI

Area = ||[V{ AV, || =

SALI -




Definition of the Generalized
Alignment Index (GALI)

In the case of an N degree of freedom Hamiltonian system we
follow the evolution of k deviation vectors with 2<k<2N, and
define [S. et al., Physica D (2007)] the Generalized Alignment
Index (GALI) of order k:

where

vy (t)

"= o

Note that GALI, (k=2) is equivalent to the Smaller Alignment
Index (SALI).



Behavior of the GALI,

Chaotic motion: GALI, (2<k<2N) tends exponentially to zero
with exponents which involve the values of the first k largest
Lyapunov exponents A, A,, ..., A, :

GALI, (t) e~ [A1-22)+ (A1 —-2A3)+..+ (A1 -]t

Regular motion: When the motion occurs on an N-dimensional
torus then the behavior of GALI, is given by [S. et al., Physica D
(2007) — S. et al., Eur. Phys. J. Sp. Top. (2008)]:

(constant if 2<Kk<N

GALI (t) « 1
SOES S iff N<k<2N
\




Behavior of the GALI, for chaotic motion

N particles Fermi-Pasta-Ulam-Tsingou (FPUT) system:

N N
1 1 8
H = EZ pi + Z [E (Qiv1 — q)* + 7 (di+1 — Qi)4]
i= i=

with fixed boundary conditions, N=8 and p=1.5.
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S. et al., Eur. Phys. J. Sp. Top. (2008)
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Behavior of the GALI, for regular motion

N=8 FPUT system

obe_.  GAL,  (b)]
| IR
GALI
o L 4 "
GALI,
) )
-l -
S ALl | 5
L) 2 20 +
6 - - - slope=-4
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S. et al., Eur. Phys. J. Sp. Top. (2008)



Global dynamics

* GALI, (practically equivalent to the use of SALI)

« GALI 3D Hamiltonian
Chaotic motion: GALI\,—0 Subspace q;=p;=0, p,=0 for t=1000.
(exponential decay) 04

Regular motion:
GALIy = constant # (
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A time-dependent
Hamiltonian system



Barred galaxies

NGC 1433 NGC 2217




Barred galaxy model

The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The
Hamiltonian that describes the motion for this model is:
1
H= E(pf +p§ + pf) +V(x,y,2)=Q,(xp, — yp,) = Energy
This model consists of the superposition of potentials describing an axisymmetric
part and a bar component of the galaxy [Manos et al., J. Phys. A (2013)].
a) Axisymmetric component:

i) Plummer sphere: if) Miyamoto—Nagai disc:
GM GM

Vdisc (x’ y’ Z) = 2
\/x2 +y +(A+VB* +2%)

Y e (3. 2) = =
\/x +y +z +e,

b) Bar component:y, (x,y,z)=-zGabc-Le j »_du
n+1°% A(u)
Ferrers bar 2 2 :
( ) where m*(u) = 2x + 2y + ZZ , A’ (u)=(a’ +u)(b* +u)(c” +u),
105 GM a +u b°+u c +u
_ B
" 307 abe n :positive integer (n = 2 for our model) , A: the unique positive solution of m*(1) =1

(L=m*(u))"™",

P.

2 2 2

ef s 1=—m?)". f <1
ItSdenSltYIS. ,0: pc( m ) , 1orm ’Wheremzzx —I—y —|—Zz,a>b>C andn=2.
C

0, form>1 a’ b’




Time-dependent barred galaxy model

The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The
Hamiltonian that describes the motion for this model is:
1
H = 5(195 + o+ p)+V(x,y,2,0) = Q,(xp, — yp,) = Energy
This model consists of the superposition of potentials describing an axisymmetric
part and a bar component of the galaxy [Manos et al., J. Phys. A (2013)].
a) Axisymmetric component: Mg+My()+M,(t)=1, with M,(¢)=M;(0)+at

i) Plummer sphere: if) Miyamoto—Nagai disc:
GM, GM (1)

\/x2+y2+22+852 x2—|—y2+(A—|— /324—22)2

Vsphere(x’yjz) - Vdisc(xayaz):_\/

. _ p. = du
b) Bar component:y, (x,y,z)=-zGabc p—! L G
Ferrers bar 2 2 2
( ) where m*(u) = 2x + 2y + ZZ , A’ (u)=(a’ +u)(b* +u)(c” +u),
105 GM , (1) a +u b°+u c +u

397 abe 4 positive integer (n = 2 for our model) , A: the unique positive solution of m*(1) =1

(L=m*(u))"™",

P

2 2 2

ef s 1=—m?)". f <1
ItSdenSltYIS. p: pc( m ) , 1orm ’Wheremzzx —I—y —|—Zz,a>b>C andn=2.
C

0, form>1 a’ b’
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A dissipative dynamical
system



Lorenz system

We consider [Moges et al, IJBC (2025)] orbits leading to different

dynamical behaviors for the 3D Lorenz system [Lorenz, J. Atmos.
Sci. (1963)]:

Frie a(y —x)
dy_
ey =rx—y—XZ
dz_ b
1t = Xy VA

In all cases GALI,, k=2, 3, follows the evolution defined by:
GALI (t) « e~ [R1=2A2)+..+ (A1 —A)]t



Lorenz system
We study the orbit with initial condition (x,y,z) = (1,3,6) fora = 10, b = 8/3.

@  orbit (b) LEs ¢, GALIs
i 1|, 2
11 =
Z-02|] =°°
©og — g_os 2_10 "Pkl’-7(2A}7A27XJ]:“I r = 2_ 1
~< =~ -2 -1 0 .
504 stable fixed point
S <-05 -
7 6 A — , , 0.6
5 4 - )\1 /\2 0 3 X )\5 |
v 2
3 x 0 1 2 3 4 5 0 1 2 3 4 5
7)\1 7/\2 —0.3 x A;g
r=1.0

stable limit cycle

40 = A7 -4 05 o

1 2 3 4 5 02 04 06 08 1

—A1—A2 —0.05 x A3 0 --exp[—(x1 — x2)]

r=33.3
chaotic attractor

(GALLy)




Chaos diagnostics based on
Lagrangian descriptors (LDs)



Lagrangian descriptors (LDs)

The computation of LDs is based on the accumulation of some positive
scalar value along the path of individual orbits.

Consider an /N dimensional continuous time dynamical system

. dx(t)
X =— = f(x,t)

The Arclength Definition [Madrid & Mancho, Chaos (2009) — Mendoza &
Mancho, PRL (2010) — Mancho et al., Commun. Nonlin. Sci. Num. Simul.
(2013)].

Forward time LD:

T
LD!(x, 1) = j I%x(t)||dt
0
Backward time LD:
0
LDb(X,T)Ij Ix()||dt
—T

Combined LD:
LD(x, 1) = LDP(x, 1) + LD!(x, 1)



LDs: 1 dof Duffing Oscillator

1 1
_ 2, 4__2
H(x,y) 5 y 4x 2x
The system has three equilibrium points: a saddle located at the origin and

two diametrically opposed centers at the points (£ 1, 0).

T

\

Homoclinic
orbit
Center Saddle
Ma\nifold = Manifold
% 0 1 1 0 ) 5
L b i

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo.3958985

The location of the stable and unstable manifolds can be extracted from the
ridges of the gradient field of the LDs since they are located at points where
the forward and the backward components of the LD are non-differentiable.



Lagrangian descriptors (LDs)

The ‘p-norm’ Definition [Lopesino et al., Commun. Nonlin. Sci. Num.
Simul. (2015) — Lopesino et al., Int. J. Bifurc. Chaos (2017)].
Combined LD (usually p=1/2):

T N
LD(x, 1) = f (z Ifi(x,t)|p>dt
—-T i:].

, . .17 2 2 1.2 2 2 1.3
Hénon-Heiles system: H = E(px +py) +E(X +y )+X y—gy

Stable and unstable manifolds for H=1/3, t=10.

60

0.5} % 05
Dy 50 Dy
Ot Or
45
-0'5 B 40 '0.5

-0.5 0 4 05 1

From Agaoglou et al. ‘Lagrangian descriptors: Discovery and quantification of phase space structure and transport’, 2020, https://doi.org/10.5281/zenodo0.3958985



Using LDs to quantity chaos

We consider orbits on a finite grid of an n(=1)-dimensional subspace of the
N(=n)-dimensional phase space of a dynamical system and their LDs.
Any non-boundary point x in this subspace has 2n nearest neighbors

yli =X i G(l)e(l), i = 1, 2, .., n,

where e is the ith usual basis vector in R™ and ¢ is the distance between
successive grid points in this direction.

The difference D{ of neighboring orbits’ LDs:
n f f f fro—
() = iz [LD'() — LD (yi")| + [LD' () — LDy )|
LDf (x)

2n .
i=1

The ratio R} of neighboring orbits’ LDs:

LX) =

1 O LD'(y;") + LD'(y;)
1- ZnE LDf (x) '

i=1

Hillebrand et al., Chaos (2022) — Zimper et al., Physica D (2023)



Application: Hénon-Heiles system
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Application: Henon-Heiles system

H=1/8 0.4 = Variation of LDs with
&5 regard to initial
' 1600 ; .pe
. ~ | conditions.
< 00 S * .
: \ regular regions: smooth
—0.2f 1400 | chaotic regions: erratic
- | [also see Montes et al.,
e WL — . -1 Commun. Nonlin. Sci. Num.
—0.2 .2 : -0.4 -0.2 0.0 0.2 0.4 0.6 :
‘ ) Simul. (2021)]
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Application: Hénon-Heiles system
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Application: 2D Standard map
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P, : percentage of correctly characterized orbits
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Summary

The Smaller (SALI) and the Generalized (GALI) ALignment Index methods are fast, efficient and

easy to compute chaos indicator.

Behaviour of the Generalized ALignment Index of order k (GALI,):

v Chaotic motion: it tends exponentially to zero

v Regular motion: it fluctuates around non-zero values (or goes to zero following power-laws)

v
v

v
v

v

GALI, indices :

can distinguish rapidly and with certainty between regular and chaotic motion

can be used to characterize individual orbits as well as "chart" chaotic and regular domains
in phase space

can identify regular motion on low—dimensional tori

are perfectly suited for studying the global dynamics of multidimentonal systems, as well as
of time-dependent models

they must be used with care in the case of dissipative systems

*  Weintroduced and successfully implemented computationally efficient ways to effectively identify
chaos in conservative dynamical systems from the values of LDs at neighboring initial conditions.

v

Advantages:

* The indices show overall very good performance, as their classifications are in accordance with the
ones obtained by the SALI at a level of at least 90% agreement.

* Easy to compute (actually only the forward LDs are needed).

* No need to know and to integrate the variational equations.
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